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Abstract—MPI allows applications to treat processes as a logi-
cal collection of integer ranks for each MPI communicator, while
internally translating these logical ranks into actual network
addresses. In current MPI implementations the management and
lookup of such network addresses use memory sizes that are
proportional to the number of processes in each communica-
tor. In this paper, we propose a new mechanism, called AV-
Rankmap, for managing such logical addressing. AV-Rankmap
takes advantage of logical patterns in rank mapping that most
applications naturally tend to have, and it exploits the fact
some aspects of the network address translation are naturally
more performance critical than others. It uses this information
to compress the network address management structures. We
demonstrate that AV-Rankmap can achieve similar or better
performance compared with that of other MPI implementations
while using significantly less memory.

I. INTRODUCTION

MPI is the most commonly used programming model for
scientific computing on large supercomputing systems. Con-
sequently, keeping up with the growing scale of such systems
is a critical aspect in the design of MPI implementations.
In the past few years, tremendous improvements have been
made in MPI implementations with respect to avoiding data
structures that scale linearly or superlinearly with system
size [8]. Yet despite these improvements, MPI implementations
today still have scalability limitations. One example is MPI’s
management of process logical network addressing.

MPI processes are logically represented as integer ranks
within communicators, while the MPI implementation inter-
nally maintains the physical network addresses of the dif-
ferent processes. When a user application moves data be-
tween processes by addressing them using these ranks, the
MPI implementation internally translates such ranks into the
corresponding network addresses before communication can
be performed. Such network address management has two
closely related aspects that need to be considered. First, the
network physical addresses themselves and their associated
data structures need to be maintained: we refer to these as
“virtual connections” or “VCs.” Second, a mapping between
the logical ranks to the network physical addresses needs to be
maintained for each communicator: we refer to this mapping
as “virtual connection reference tables” or “VCRTs.”

Such structures exist in practically every MPI implemen-
tation today, even though the terminology used is sometimes
different. For example, MPI implementations such as MPICH,
MVAPICH, Intel MPI, Cray MPI, IBM Blue Gene MPI,

Microsoft MPI, Tianhe MPI, and Sunway MPI, use the ter-
minology of VCs and VCRTs. Open MPI and Fujitsu MPI,
on the other hand, use the terminology of “proclist” and
“plist”, though conceptually they are no different from VCs
and VCRTs.

Most MPI implementations manage VCs and VCRTs in a
way that is optimized for performance. For example, the num-
ber of dereferences or lookups are minimized, and few or no
branches occur in the performance critical path. Unfortunately,
not much attention has been paid to the memory usage of these
data structures. For example, data structures related to different
transports (e.g., network or shared memory) are embedded
into the VC, rather than referenced from it. Similarly, data
structures related to the shared-memory topology, which are
required for transport selection, are embedded into the VC for
fast lookup. Such a model, while optimized for performance,
costs substantial memory.

This situation is also true for the VCRTs that manage
the mapping of logical process ranks to network physical
addresses. Maintaining the process mapping metadata is com-
plicated by the fact that the MPI standard allows users to
create new communicators by arbitrary reordering the ranks
compared to the parent communicator. That is, a single process
can have two completely different ranks within two different
communicators, with no correlation between the two. Because
there are P ! (P factorial) valid mappings of communicator
ranks to network addresses, where P is the number of pro-
cesses in the communicator, lookup tables—such as VCRTs—
remain the common practice for maintaining this metadata.
Although this simple approach works for any possible reorder-
ing of ranks, it is not memory efficient. It takes O(P ) memory
space on each process for each communicator, that is, O(nP )

total memory space on each process, where n is the number
of communicators created by the process. Consequently, such
metadata can result in the MPI implementation consuming a
significant fraction of the available memory, particularly for
very large supercomputers.

Our objective is to reduce the memory consumption of
such network address management for MPI processes by
using appropriate compression techniques. We observe that
although the network address management used by current
MPI implementations is the most generic model that works
for any possible reordering of ranks, most applications do not
need or use such generality. For example, the rank mappings
used by most applications are not arbitrary: they follow a



simple, predefined pattern. Applications such as Nek5000 [5]
tend to create simple duplicates of existing communicators;
in such cases, the rank mapping of the new communicator is
exactly the same as the rank mapping of the original parent
communicator. Similarly, applications such as NWChem [18]
and QBOX [6] tend to lay the processes in a virtual two-
dimensional grid and split processes as “row” and “column”
communicators. The “row” communicator’s rank mapping
then is a subset of the parent communicator’s rank mapping at
a fixed offset; the “column” communicator’s rank mapping is
a simple strided lookup based on the parent communicator’s
rank mapping. For such applications, the new communicator
does not need a completely independent VCRT but, rather, just
some simple additional information, such as the split offset or
stride, and a reference to the parent communicator’s VCRT in
order to calculate its own mapping. Such compressed format
significantly reduces the memory footprint of the required
metadata, but it comes at the cost of additional computation
to perform the required translation.

Based on these observations, we propose a new mechanism,
called AV-Rankmap, for network address management. AV-
Rankmap uses several compression techniques to minimize
the memory space used for network address management.
We study the behavior of AV-Rankmap with respect to two
properties: memory usage and performance.

With respect to memory usage, we present in Section III
a survey of various HPC applications and demonstrate that
although AV-Rankmap does not improve memory usage in
the worst-case scenario, it does significantly improve the
common cases in which most applications fall. For example,
we decouple the network address infrastructure to distinguish
elements in the VC structure based on various properties such
as commonality of use, compressibility, and network-specific
attributes. This decoupling allows applications that use only
a subset of the features in MPI, without relying on the full
generality of MPI, to benefit from a smaller overall memory
footprint. Similarly, for applications that create communicators
with certain kinds of patterns—three forms of which are
studied in this paper: direct, offset, and strided—we detect
such patterns and use them to reduce the metadata storage.
When we are unable to detect any pattern in the rank mapping,
we simply fall back on the original lookup table–based model.

With respect to performance, we study both the commu-
nicator creation path (which is typically not performance
critical) and the data communication path (which is typically
performance critical) and measure the overhead added in each
case. For the noncritical path, we aim to keep the additional
cost low, although some extra overhead is often tolerable.
The additional cost is due primarily to the rank-mapping
pattern detection involved in the AV-Rankmap approach. We
use simple pattern detection techniques, although one could
use more sophisticated techniques that might have higher
overhead.

For the performance-critical path, however, the overhead
needs to be practically negligible for the proposed approach
to be viable. For most MPI implementations performance
is the most significant metric for measuring impact and the

general motto for incorporating new techniques is: if the
performance overhead of the proposed approach is not zero,
it is too high! For a more quantitative measure, a high-
performance and finely-tuned MPI implementation would cost
as low as approximately 50 instructions on the communica-
tion path all the way from the application to the low-level
network communication layer (e.g., in MPI_Put). Adding
a single additional instruction in this path would lead to a
2% overhead in performance (assuming, for simplicity, that
all instructions are equally expensive). Keeping this in mind,
we perform a detailed instruction and cache-level analysis of
the performance-critical path and illustrate that although the
AV-Rankmap approach adds a few additional instructions for
address translation in the performance-critical path, the lost
performance due to the additional instructions is more than
compensated by the improved cache activity because of the
smaller metadata footprint, thus leading to similar or better
performance while using significantly less memory.

The overall design of AV-Rankmap and a detailed evalu-
ation with both microbenchmarks and real applications are
showcased in this paper on up to 786,432 MPI processes.
We demonstrate that AV-Rankmap can improve the memory
usage of current MPI implementations by several orders of
magnitude in many important cases.

II. COMMUNICATOR CREATION IN MPI

At initialization time, MPI implementations create
two communicators by default: MPI_COMM_WORLD and
MPI_COMM_SELF. After initialization, applications are
allowed to create additional communicators dynamically.
A new (child) communicator is typically created from one
existing (parent) communicator, although routines also exist
that allow processes from two existing parent communicators
to be combined into a single communicator.

Communicator creation routines can be broadly classified
into four categories.
Duplicate Communicators. The most common communicator
creation model used in MPI is duplication. MPI provides three
routines in this model: MPI_Comm_dup, MPI_Comm_idup,
and MPI_Comm_dup_with_info. These routines allow
the application to create a new communicator with a rank
mapping identical to that of the parent communicator but with
a different communication context.
Split Communicators. The second communicator cre-
ation model is communicator splitting. Routines such as
MPI_Comm_split fall into this category, in which the
application can split the available processes into multiple
disjoint groups (using a unique color to identify each group),
where each group forms its own new communicator. In this
model, the application can reorder the ranks of the processes
in the new communicator, potentially in an arbitrary fash-
ion. In practice, however, most applications do not reorder
processes arbitrarily (or at all) when creating such split
communicators. Thus, the resulting child communicators are
often simple subsets of the parent communicator, with a
well-structured mapping between the ranks of each process
on the parent and child communicators. Other routines such



as MPI_Comm_create, MPI_Comm_create_group, and
MPI_Comm_split_type also fall in this category.
Topology-Aware Communicators. Topology-aware com-
municator creation routines such as MPI_Cart_create,
MPI_Dist_graph_create and MPI_Graph_create
allow applications to map application communication topolo-
gies to physical hardware topologies. For all these routines,
two forms exist: with and without reordering. Reordering
allows the ranks of the child communicator to be reordered in
a topology-aware fashion (to allow for faster communication
between some ranks compared with others). When reordering
is disabled, the child communicator has a rank mapping
identical to that of the parent communicator. In practice,
however, topology-aware communicators are not widely used.
In the cases where they are used, reordering is typically
not applied. And in even when reordering is applied, most
current MPI implementations do not perform any actual re-
ordering of processes, with a few notable exceptions such
as MPI_Cart_create on Blue Gene supercomputers.1 The
outcome is that, in the vast majority of cases, the parent and
child communicators have identical rank mappings. In cases
where reordering is applied, the mapping is not identical, but
is computable based on the hardware topology, though we do
not do so in this paper.
Intercommunicators. Intercommunicators are created by
using MPI_Intercomm_create, by dynamically spawning
additional MPI processes (e.g., MPI_Comm_spawn),
or by connecting multiple MPI applications (e.g.,
MPI_Comm_connect). An intercommunicator has two
nonoverlapping groups: a remote group and a local group.
Rank translations for these two groups are handled separately.
Intercommunicators are rarely used in large applications.
Most applications tend to rely on traditional communicators
(called “intracommunicators”) created by using a routine
from one of the other three categories. The reason is
threefold. First, typical application use cases do not map
well to intercommunicators where communication is not as
intuitive (e.g., a process can communicate with processes
only in the remote group and not its local group). Second,
not all routines in MPI are “intercommunicator-safe”; for
example, one-sided communication windows are undefined
over intercommunicators. Third, large supercomputers such
as the IBM Blue Gene and Cray XE, XK, and XC systems
do not support creating intercommunicators. As application
workflows that allow multiple applications to connect to and
communicate with each other gain more traction, we expect
intercommunicators to be more widely used. Nevertheless,
intercommunicators are unlikely to ever become the primary
communication model for most applications.

An additional aspect to note here concerns internal com-
municators. In most MPI implementations, for every com-
municator that is created by the user, the MPI implementa-
tion internally creates additional convenience communicators.
A common example is convenience communicators created

1This is expected to change in the future: many MPI implementations are
actively working on improving topology-aware communicator creation, and
reordering ranks when needed.

for topology-aware collectives. For example, for each user-
created communicator, some MPI implementations create one
additional internal subcommunicator containing processes that
reside on the same node and a second internal subcommuni-
cator containing one root process from each node. Thus, in
essence, for each user-created communicator a total of three
communicators is created, although not all of them contain the
same number of processes.

III. A SURVEY OF COMMUNICATORS IN APPLICATIONS

Section II described the different communicator creation
techniques available in MPI. In practice, however, some tech-
niques are more commonly used than others. To understand the
communication creation models used in various applications,
we performed a survey of a large number of applications
comprising the NAS parallel benchmarks [4], CORAL bench-
marks [3], DOE codesign applications [1], [2], and other large
applications that consume significant compute cycles on large
supercomputing centers [18], [5]. Although our survey covered
62 different applications, we highlight only a small subset of
the survey here, because of space constraints.

Nek5000. Nek5000 is a highly scalable spectral-element
method for solving computational fluid dynamics problems.
Its computational model relies on solving computational grids
at an increasing level of refinement. That is, for a given
computational problem, it creates multiple grids, each at a
different granularity or coarseness. Solving each grid gives
an approximate solution to the problem. Solving the next-
finer grid then refines the result based on the approximation
generated by solving the previous coarser grid.

Because each grid requires its own communication con-
text, Nek5000 creates a new communicator for each
grid. These communicator are essentially duplicates of
MPI_COMM_WORLD, and the number of communicators cre-
ated increases as the number of levels of refinement desired
by the application increases. A rule of thumb is that as the
problem size grows, the number of refinement levels (and
hence the number of communicators created) grows as well. In
current production runs of the application, a “medium-scale”
problem typically creates 24 refinement levels (i.e., 24 new
communicators), and a “large-scale” problem typically creates
86 refinement levels (i.e., 86 new communicators). Medium-
scale problems are considered appropriate to scale up to 16–
32K processes, while large-scale problems are considered
appropriate to scale up to the full scale of the current largest
supercomputers in the world.

NWChem. NWChem is a quantum chemistry application suite
featuring a broad set of simulation capabilities targeted at
many areas including quantum simulation of molecules with
heavy isotopes and multiscale methods for modeling aqueous
chemical reactions relevant to environmental chemistry. For its
core linear algebra computations, NWChem (using libraries
such as ScaLAPACK) creates virtual two-dimensional data
grids on which the computation is carried out. To improve
scalability, it splits the MPI processes into “row” and “column”
communicators using MPI_Comm_split. Each process is a
part of a “row” and a “column” communicator in this model.



Data exchange and synchronization are then limited along
these smaller communicators, thus improving performance and
scalability. We note that during the split, process ranks are
not reordered. Thus, the ranks of the processes in the “row”
communicator are essentially the same as the ranks of the
processes in MPI_COMM_WORLD but are offset by a constant
value. Similarly, the ranks of the processes in the “column”
communicator can be calculated with fixed offset and stride
values.

Apart from the core linear algebra computations, NWChem
spends a large fraction of its computation on force calculations.
These are typically done through one-sided communication
that, after passing through multiple layers of the software
stack, eventually uses MPI-3 one-sided communication (or
RMA) windows internally. For each RMA window, the MPI
implementation internally creates a new communicator that
is a duplicate of the parent communicator from which the
RMA window is being created, in order to perform the
required data movement and synchronization. NWChem it-
self creates three to four RMA windows, depending on the
problem being solved. However, when used together with the
Casper [16] software stack for asynchronous progress, for
each window created by NWChem, Casper creates as many
duplicate windows as the number of cores on each node of
the machine. For example, when NWChem is executed on the
IBM Blue Gene/Q with 16 processes on each node, it creates
64 RMA windows (and thus 64 new communicators). When it
is executed on the Intel Xeon Phi Knights Landing with 60–70
processes on each node, it creates on the order of 300 RMA
windows (and thus 300 new communicators).

HACC. HACC is an astrophysics framework that simulates
the formation of structure in the expanding universe. HACC’s
computational model is similar to the linear algebra portion of
NWChem in that they both rely on multidimensional data grids
for their computation. However, HACC does not split its com-
municators; instead, it creates multiple topology-aware Carte-
sian communicators (using MPI_Cart_create) represent-
ing three-dimensional, two-dimensional, and one-dimensional
distributions of the problem. Like NWChem, HACC does not
reorder the processes in the new communicator. Thus, apart
from the additional topology information that is attached to
the communicator, the process mapping itself is identical to
that of the parent communicator.

Summary. Table I summarizes the communicator creation
models used in a number of applications. In this table, we
have classified the communicator creation models into several
categories. The “dup” column refers to the cases where a
duplicate communicator is created either directly by using one
of the communicator duplication functions or indirectly by,
for example, creating an RMA window on a communicator.
The “split” columns refer to the cases where a communicator
is split into smaller subcommunicators. “Offset” refers to the
case where the process ranks in the new communicator are
identical to that of the parent communicator, but at a fixed
offset; “stride” refers to the case where the process ranks in
the new communicator can be calculated based on a fixed

TABLE I: Mapping models for communicators.

Application Dup MPI Comm split Topo IntercommOffset Stride Irreg.
Nek5000 x
QMCPACK x x
NWChem x x x x
HACC x
QBOX x x
CAM-SE x x
NAMD x x
LSMS x x
SP x x
BT x x x
FT x x
Graph500 x x x
Nekbone x
SNAP x x
MCB x
cian2 x
MCCK x x
mocfe bone x x
pynamic x x x
MACSio x
AMG2013 x
CNS x
SMC x
AMR x

offset and stride from the parent communicator; and “irreg”
refers to the case where no pattern in the mapping is detected.
The “topo” column refers to the cases where a topology-aware
communicator is created. The “intercomm” column refers to
the case where dynamic spawned or connected processes are
used.

Based on the summarized information in Table I, we note
a few important points.

1. The most commonly used communicator creation
model is that of communicator duplication (either by using
MPI_Comm_dup or by creating RMA windows). While the
duplication itself is straightforward, as noted in Section II, the
MPI implementation creates multiple internal communicators
for each user communicator. These internal communicators,
however, are not simple duplicates of the parent communicator.
Thus, in some sense, no “pure” duplication of communicators
is possible in modern MPI implementations.

2. Split communicators (particularly, offset based and stride
based, such as those described for NWChem) are heavily used.
The offset-based model is the more common model and is
valuable in splitting a multidimensional process grid of any
number of dimensions. A common scenario where the offset-
model of splitting is used is when the application wants to
divide the available processes into smaller groups of fixed
sizes. The stride-based model, on the other hand, is valuable
in splitting a multidimensional process grid when the number
of dimensions is larger than one.

3. Irregular splitting of communicators occurred in a single
application, LSMS. We note, however, that here “irregular”
does not mean that the application does not have any pattern
in splitting the communicator. In fact, a real application
is unlikely to create a split communicator with no pattern
whatsoever. Here “irregular” means only that the pattern used
by the application does not fall into the fixed set of patterns
that we automatically detect.

4. Topology-aware communicators are used by two applica-



tions: HACC and SNAP [7]. Both use MPI_Cart_create
to create these communicators, and neither application reorders
the process ranks. Thus, the topology-aware communicators in
these cases are essentially regular duplicate communicators, as
far as process mapping is concerned.

5. Intercommunicators are rarely used and were observed
only in NWChem. However, the use of intercommunicators in
NWChem is not for creating dynamic processes; rather, it is
a mechanism for creating regular intracommunicators, but in
a noncollective fashion. MPI-2 did not provide functionality
to create communicators in a noncollective fashion, and hence
researchers attempted to do so by using intercommunicators,
as described in [10]. In fact, the intercommunicators created in
this process are temporary and are freed as soon as the final in-
tracommunicator is created. MPI-3 included this functionality
in MPI_Comm_create_group, which is simpler and more
efficient compared with the method used by NWChem. At the
time of our writing this paper, however, NWChem has not yet
been updated to use this new MPI-3 functionality. When it
does move to this new MPI-3 functionality, it will no longer
have a dependency on intercommunicator creation. So, in a
way, this dependency is a temporary artifact of the current
implementation of NWChem.

IV. DESIGN OF AV-RANKMAP

As described earlier, network address management has two
closely related aspects that need to be considered: (1) net-
work physical addresses themselves and their associated data
structures (i.e., VCs), and (2) a mapping between the logical
ranks to the network physical addresses (i.e., VCRTs). The
AV-Rankmap model retains the concept of VCs and VCRTs
but optionally adds one additional level of abstraction, as we
describe in this section.

First we focus on the traditional VCRT-VC model, the data
structures it maintains and the advantages of such a model.
Different MPI implementations use different terminologies for
these structures, but these concepts exist in almost every MPI
implementation available. Then we describe the AV-Rankmap
model, including the overall design of the proposed approach,
how it differs from the VCRT-VC model, and its benefits and
disadvantages compared with the VCRT-VC model.

A. Traditional VCRT-VC Model
The traditional VCRT-VC model used in most MPI im-

plementations uses a simple two-level hierarchy. At the top
level is a VCRT structure, which essentially is a collection of
pointers to each VC structure. The VCRT is an O(P ) structure
that is statically allocated at initialization time.

At the bottom level is a VC structure that contains the
required information for communicating with a process. The
VCs themselves can be fully dynamically allocated, in theory,
for example at the time of the first communication with the
corresponding process. However, most MPI implementations
today choose to statically allocate a “small part” of the VC
structure (basic bookkeeping information) and dynamically
allocate the more expensive portions of the VC on demand
(such as network connections and communication buffers).
Thus, the VC structures result in another O(P ) memory space.

The VC structure is organized to minimize the number
of dereferences. Consequently, all the information required
for communication in embedded into this structure, rather
than referenced from it. We classify the elements of the
VC structure into three categories: core network access in-
formation, multitransport functionality, and functionality for
dynamic processes.

Core Network Access Information. The core network access
information refers to the basic network-specific functionality
that is necessary for accessing a remote process. This includes
information such as target endpoint information. For example,
for InfiniBand, this would be the queue-pair information
to which we can send data. Such information is the most
basic and essential part of the VC and is required for any
communication operation.

Multitransport Functionality. Almost every MPI imple-
mentation allows for data to be communicated over mul-
tiple transports. At least two transports are provided by
all MPI implementations—shared memory for intranode
communication and a network interconnect for internode
communication—although some MPI implementations allow
for more than two transports to be used simultaneously. Each
transport has its own collection of information, such as com-
munication functionality to use, communication thresholds for
eager/rendezvous communication and queues for temporary
communication buffers. For fast lookup, such information is
directly embedded into the VC structure itself, thus avoiding
a dereference. The cost of doing so, however, is that (1)
the transport-specific information is replicated a large number
of times across the different VCs and (2) some VCs might
maintain more information than what they need for communi-
cation with the peer process that they correspond to (despite
minimizing such additional information using unions).

Functionality for Dynamic Processes. Dynamically spawned
or connected processes is a core part of the MPI standard,
although it is rarely used in applications. However, current
VC structures tend to give such functionality importance (with
respect to performance) equal to that of more commonly used
functionality such as basic send/receive communication. Con-
sequently, elements that are required to implement dynamic
processes are embedded into the VC structure as well and use
up memory space irrespective of whether the application uses
dynamic processes or not.

B. AV-Rankmap: Compressing the VC
The AV-Rankmap model aims at improving the traditional

VCRT-VC model in two ways: (1) reducing the size of the VC
structure based on various properties such as commonality of
use, compressibility, and network-specific attributes and (2)
reducing the O(P ) memory usage of the VCRT structure,
where possible, by detecting rank mapping patterns.

As described in Section IV-A, the traditional VC structure
has three classes of components. Of these, the core network
access information is the most critical part.

Compressing the Multitransport Functionality. The multi-
transport functionality in the traditional VC structure is highly



redundant since the number of transports used is typically
much smaller than the number of VCs. The number of VCs
is equal to the total number of processes in the system, while
the number of transports is equal to the number of networks
being used (which is typically just two: shared memory and
an internode network). Consequently, if we can decouple the
transport-specific functionality from the VC, such information
can be highly compressible. The challenge, however, is that
such decoupling needs to be done in a way that it still retains
fast lookup of this data, which was the primary reason these
fields were embedded into the VC in the traditional model. We
need to consider two sets of transport-specific variables: (1) a
single variable that identifies which transport to use and (2)
a collection of variables that are used by the transport itself.
These two sets have very different properties.
Identifying Which Transport to Use. The variable that identifies
which transport must be used for a given peer process should
either be embedded directly into the VC structure (as in the
traditional model) or be easily and quickly computable. Fast
computability is, unfortunately, not easy particularly when
the processes are not laid out in a homogeneous manner.
Thus, we chose to always store this information inside the
VC structure, using just enough bits to store the number of
available transports (single bit for two transports). While, in
theory, this is an O(P ) data structure, in practice, network
transport addresses tend to have unused bits that can be
used here without adding additional memory overhead. For
example, the libfabric network API allows network transports
to use 63-bit network addressing, thus leaving behind one bit
for such transport-selection functionality. Similarly, the UCX
network API uses aligned pointers for network addressing
where the last 2-3 bits are unused (depending on whether the
alignment is 4-byte or 8-byte). Extracting this information at
runtime requires a bit-mask or bit-shift operation, which is a
single (fast) instruction on most architectures.
Accessing Transport-specific Information. Decoupling
transport-specific information from the VC structure improves
compressability, but it will add an additional address
dereference (e.g., a pointer lookup) to access this information.
There is no escaping this dereference, unfortunately. But we
can attempt to minimize its cost.

There are two costs associated with this additional derefen-
rece: (a) cache penalty for looking up the additional informa-
tion, and (b) instruction costs (or instructions per cycle). Of
these, based on our analysis, we expect the cache penalty to
not be a significant issue. Specifically, for applications that
perform frequent communication, these fields would already
be in the processor cache anyway, and embedding them inside
the VC structure or not does not add any additional penalty
as long as the processor cache has sufficient associativity. On
the other hand, for applications that do not perform frequent
communication and might not be able to retain the transport-
specific information in their cache, the communication cost
itself would likely not be as big a concern and the additional
cache-miss to access this information would likely not be as
important.

For the instruction costs, however, we have not yet been able

to identify a satisfactory solution. The additional dereference
results either in additional instructions (to load the transport-
specific information to registers) or in more expensive instruc-
tions (e.g., memory-based instructions rather than register-
based instructions). Even if the data is in cache, memory-based
instructions seem to be fairly expensive compared to register-
based instructions thus impacting the instructions per cycle
that we can achieve. While this is certainly a concern, as we
will demonstrate later, the smaller memory footprint of the AV-
Rankmap approach leads to fewer cache misses, which more
than compensates for such additional instruction cost. Thus,
from an overall performance perspective, such decoupling of
transport-specific information is still a win.

Deprioritizing Dynamic Processes. As described in Sec-
tion IV-A, the traditional VC structure gives equal importance
to all fields, irrespective of how widely they are used in
applications. In particular, dynamically spawned or connected
processes need additional information such as which process
group they belong to. Embedding this information into the
VC can improve performance, but it also increases the size
of the data structure for applications that do not use them. In
the AV-Rankmap model, we deprioritize dynamic processes
such that applications that do not use dynamic processes use
lesser memory. However, this deprioritization comes at a cost:
applications that do use dynamic processes can, in some cases,
use more memory than the traditional VCRT-VC model.

Specifically, communicators that contain a combination
of processes such that some of them are from one
MPI_COMM_WORLD and some others from a different
MPI_COMM_WORLD (i.e., dynamically spawned or connected
processes) need to maintain two pieces of information: which
process group does the remote process belong to and what is
its rank within that process group. In the traditional VCRT-VC
model, both these pieces of information were stored inside the
VC structure. In the AV-Rankmap model, however, we move
this information out of the VC and into the communicator
structure. The benefit of this model is that for applications that
do not have such communicators with processes that belong
to multiple MPI_COMM_WORLDs, no additional memory is
used. However, consider an application that creates multiple
communicators containing various collections of dynamically
spawned processes: for such applications, each such commu-
nicator would need to store this additional information, thus
costing more memory than the traditional VCRT-VC approach
does.

Fortunately, as we describe in Section IV-C, this is the
worst-case scenario. In most cases, we can detect patterns in
the formation of such communicators and can substantially
compress this information.

C. AV-Rankmap: Rank-Address Translation
Rank-address translation is essentially the process of finding

the appropriate network address to communicate with given a
communicator and a rank within that communicator. Here we
first describe the general model in which such communication
information is stored in the AV-Rankmap model. We then
describe how the optimizations utilize patterns in the rank
mapping to compress the amount of memory used.
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Fig. 1: Process address translation scheme.

In the AV-Rankmap model, when the application initializes,
each process creates an address vector (AV) that stores two
pieces of information for each target process: (1) either the
VCs themselves or a pointer to the VC, and (2) which com-
munication transport to use for that target process. For some
networks, the size of the network address is at most 64 bits, so
it is intuitive for the VC to be directly embedded into the AV,
thus avoiding an additional dereference. For any given process,
the index within the AV containing the VC for that process
is referred to as the lpid (local process ID). If the application
spawns or connects to another MPI_COMM_WORLD, then a
new AV is created that stores the VCs corresponding to the
new group of processes. Each such spawned or connected
group is referred to as a “process group” and has its own
unique ID, called the pgid. A pgid refers to both the process
group and the AV associated with that process group. Thus,
a pgid and an lpid together can uniquely identify any process
in the application. The rank-address translation process can be
formally represented as the following mapping.

< comm, rank >!< pgid, lpid >
Once the AV and the corresponding VCs are created, the

next step is to create a mapping between the communicator
and one or more AVs. This is illustrated in Figure 1. As
discussed in Section III, for the communicators created in most
applications, the rank mappings are not arbitrary: they follow
a simple, predefined pattern. AV-Rankmap takes advantage
of this behavior to try to identify common patterns and use
this information to compress the memory space required for
maintaining such mapping. It identifies three regular mapping
models: direct, offset, and stride, which represent the most
common use cases in applications.

The direct model indicates that the ranks in the new
communicator map to the same AV and its lpids in exactly
the same order as MPI_COMM_WORLD. In this model, we do
not need any additional storage other than the AV. The index
in the AV (i.e., the lpid) is the same as the communicator
rank in this model. Communicators that are duplicates of
MPI_COMM_WORLD fall into this model. We note that in the
traditional VCRT-VC model, such communicators still needs
at least one O(P ) VCRT.

The offset model indicates that the ranks in the new com-
municator map to the same AV and its lpids in exactly the
same order, but at a fixed offset, as MPI_COMM_WORLD. In
this model, apart from the AV itself, the only additional piece
of information that needs to be stored is the offset. The index
in the AV (i.e., the lpid) can be calculated as the communicator

rank plus the offset, in this model. Communicators that have
been split without reordering from MPI_COMM_WORLD or one
of its duplicates fall into this model.

The stride model allows the rank in a communicator to be
mapped to a noncontiguous subgroup of MPI_COMM_WORLD
with a fixed stride. The stride model has three parameters:
stride, blocksize, and offset. The stride is the interval between
the start of each block. The blocksize is the number of
processes in each block. The offset is the offset of the rank 0
of the communicator.

All three regular mapping models use constant memory
regardless of the number of ranks in the communicator. We
note that these regular mapping models are valid only for
communicators where all ranks are in the same process group,
that is, there are no dynamic processes (pgid = 0).

When the rank-process mapping does not fit any of the
regular mapping models, AV-Rankmap falls back on irregular
mapping models using a rank lookup table. We designed
two lookup tables for irregular mapping: lut and mlut. The
lut is a dense array of lpids. It is used when all the ranks
are in the same process group. The mlut is an array of
< pgid, lpid > pairs. It is used only when some of the
ranks in the communicator belong to a different process group
from others. We note that the lut requires only that all ranks
have the same pgid; this pgid does not need to be zero. An
example is an intercommunicator that is created when a new
process group is connected. The remote group and the local
group have different pgids, but the ranks in each group have
the same pgid. Hence, both the remote group and the local
group are represented by using lut instead of mlut. We need
mlut only when we merge these two groups together using
MPI_Intercomm_merge.

Note that there is an inclusive property in both the regular
and the irregular mapping models. For example, a direct model
can also be described as an offset model with the offset value
equal to zero. This inclusive property is carefully exploited
during communicator creation.

1) Creating the Rank-Address Translation for a Commu-
nicator: Users create new communicators based on existing
communicators. When a new communicator is created, we
have two pieces of information: (1) the mapping array that
maps the ranks from the new communicator to the ranks in the
parent communicator and (2) the compressed mapping model
that allows us to translate a rank in the parent communicator to
the corresponding AVs and lpids. Our task here is to create a
similar compressed mapping model that allows us to translate
a rank in the new communicator to the corresponding AVs
and lpids. This is done in three steps. First, we try to detect a
pattern in how the ranks in the child communicator correspond
to the ranks in the parent communicators. Second, we use
this detected pattern together with any mapping pattern that
exists between the parent communicator and the AVs/lpids, to
generate a new mapping pattern between the child commu-
nicator and the AVs/lpids. Third, if there are multiple parent
communicators and the child has an irregular mapping, we try
reduce it to one of the regular mapping models.

During the creation of a communicator, the MPI imple-



TABLE II: Child communicator mapping models for a given
parent communicator rank map (row) and indirect mapping
model (column).

Direct Offset Stride Irregular
direct direct offset stride lut
offset offset offset stride lut
stride stride lut lut lut

lut lut* lut* lut lut
mlut mlut* mlut* mlut mlut

mentation first creates an indirect mapping array between
the ranks in the child and the parent communicators. This
information directly follows from the communicator creation
function being used. Once this information is obtained, the
next step is to convert this indirect mapping array to a
compressed mapping pattern. To this end, we assume that
the mapping pattern is offset based, and we calculate the
offset value based on rank 0 in the child communicator. We
then try to validate the offset value with the remaining ranks
in the indirect mapping. If successful, we set the mapping
pattern between the child and parent communicator ranks to
be offset-based. If not, we move on to stride mode and attempt
to calculate the possible block size; and we follow a similar
validation process before finally falling back on the irregular
model if the stride mode cannot be validated.

After detecting the mapping pattern between the child and
parent communicator ranks, the next step is to detect the map-
ping pattern between the child communicator ranks and the
AVs/lpids. Recall that the mapping model of a communicator
describes how the ranks are translated to AV table indices.
Therefore, the mapping model of a child communicator is
determined by both the rank map of the parent communicator
and the pattern of the mapping between the child and parent
communicators. Table II shows the state machine for deter-
mining the mapping pattern of the child communicator.

If the child communicator has an irregular mapping model
(lut or mlut), the ranks are not necessarily irregularly ordered.
The child communicator might have reordered the ranks in
the parent communicator to create a regular mapping between
the ranks to AV indices. AV-Rankmap performs an additional
scan of the ranks to determine whether an irregular model
can be converted to a regular mapping model. After all the
indirect mappings are processed and the rank map is created,
AV-Rankmap scans the lookup table using the same algorithm
in step 1 above.

We note that communicator creation is not in the
performance-critical path of most applications. Thus, while
we do not want to make communicator creation excessively
expensive, some additional cost to detect rank-mapping pat-
terns and optimize them is often acceptable. As we will
demonstrate in Section V-C, this overhead is between 3-7%
in our implementation.

2) Accessing the Rank-Address Translation: In this section,
we discuss how the the rank-address translation is accessed in
the AV-Rankmap model. This translation is accessed inside
the performance-critical path, and hence any overhead created
in this path can slow down practically every performance-
critical operation in the MPI implementation. So we need

to be particularly cautious with respect to the performance
overheads of our implementation choices in this path.

The translation is done in three step: 1) checking the
mapping model of the communicator; 2) calculating the cor-
responding index in the AV table of the rank; 3) access the
AV table for network address. In order to understand the
overhead of our implementation, we use the Intel Software
Develop Emulator (SDE) to obtain the instructions that are
being executed for the translation. We studied three different
implementations for such translation.

The first and most intuitive implementation of the rank-
address translation is using a switch statement where each
case contains the translation code for a specific model. Fig-
ure 2 and Figure 3 show the assembly code for translation
in the VC-VCRT model and the AV-Rankmap model. For a
communicator with direct mapping, the AV-Rankmap model
uses two additional instructions compared to the VC-VCRT
model. Note that for other mapping models like offset and
stride, there are additional instructions for calculating the
index from the communicator rank. The use of the switch
statement introduces four additional instructions (line 1-4 in
Figure 3). But we save two instructions for accessing the
VCRT (line 1-2 in Figure 2). The difference in the rest of
the code is for the addressing changes in accessing the VC/AV
table. Note that the jnbe instruction in the switch statement is
the branch to the default case. This is an unfortunate overhead
because the AV-Rankmap model does not have a “default” case
and it is not possible to explicitly tell the compiler not to add
this branch.

The second alternative implementation that we studied is to
use a hybrid if branch combined with a switch statement.
That is, we can simply check if the communicator uses the
direct mapping model (the if branch) and check for other
mapping models using a switch statement in the else
branch. This implementation can reduce the cost of translating
the direct mapping model to eight instruction (as shown in
Figure 4). However, the downside of this approach is that
all other models in the switch statement will have two
additional instructions due to the earlier if statement. We
can further cascade multiple if statements to prioritize all the
popular models and leave other mapping models in a switch
statement. But for every level of the cascade, we would add
two additional instructions, thus negating the benefit of a direct
check after the first level.

In addition to these two models, we can also studied a
third implementation that, in essense, manually recreates the
branch table that the compiler uses inside a switch construct,
by using goto statements. As one might expect, our initial
study (Figure 5) showed that this implementation has the least
number of instructions for the branch lookup itself since it
has the same two-instruction lookup for all models (similar
to switch) and allows us to manually disable any extra
branches that we do not need (such as the branch to the default
case, that the compiler adds for switch constructs). However,
while integrating this implementation into the overall MPI im-
plementation, we encountered a subtle and unexpected issue.
Specifically, when the compiler translates the switch statement



1 mov rax, qword ptr [rbp+0x60]

2 mov rdx, qword ptr [rip+0x43566d]

3 mov rax, qword ptr [rax+0x188]

4 mov eax, dword ptr [rax+r12

*

4+0xc]

5 shr eax, 0x1

6 cdqe

7 mov rax, qword ptr [rdx+rax

*

8+0x8]

Fig. 2: Instruction of Rank-Address
Translation in the VC-VCRT Model.

1 cmp dword ptr [rdi+0x1a8], 0xa

2 jnbe 0x435039

3 mov eax, dword ptr [rdi+0x1a8]

4 jmp qword ptr [rax

*

8+0x5cfcc8]

5 movsxd rax, esi

6 add rax, 0x1

7 shl rax, 0x4

8 add rax, qword ptr [rip+0x4682c6]

9 mov rax, qword ptr [rax]

Fig. 3: Instruction of Rank-Address Trans-
lation for direct Mode in the AV-Rankmap
Model.

1 mov edx, dword ptr [rdi+0x1a8]

2 cmp edx, 0x1

3 jnz 0x435370

4 movsxd rax, esi

5 add rax, 0x1

6 shl rax, 0x4

7 add rax, qword ptr [rip+0x467e8b]

8 mov rax, qword ptr [rax]

Fig. 4: Instruction of Rank-Address Trans-
lation for direct Mode in the AV-Rankmap
Model using “if-switch” Hybrid Imple-
mentation.

to goto branches, such translation is done after the relevant
function or macro inlining. Thus, the compiler sees all of the
inlined functions at the same time and assigns different labels
to each goto branch. By doing this manually, however, since
we do not have information on what functions the compiler
might choose to inline, we lose the ability to assign different
labels to the various goto branches. Consequently, assigning
statically decided labels for such branches would, in practice,
cause the compiler to disable inlining for such functionality.
This causes much more significant overhead compared to
the additional branches in the previous two implementations.
Thus, we had to abandon this approach and only consider
the switch-based and hybrid implementations. We will discuss
their performance impact in the Section V.

1 mov eax, dword ptr [rdi+0x1a8]

2 jmp qword ptr [rax

*

8+0x5cfbc8]

3 movsxd rax, esi

4 add rax, 0x1

5 shl rax, 0x4

6 add rax, qword ptr [rip+0x47b1c0]

7 mov rax, qword ptr [rax]

Fig. 5: Instruction of Rank-Address Translation for direct
Mode in the AV-Rankmap Model using “goto” Implementa-
tion.

V. EVALUATION

In this section, we evaluate the AV-Rankmap model from
two perspectives: memory usage and performance.

We used two different test platforms for our evaluation.
The first platform is the Mira supercomputer at Argonne
National Laboratory, which is a 49,152-node IBM BG/Q
system. Each node has 16 cores and 16 GB memory, which
allows running 768K processes at the full system scale. Most
of our experiments were performed on Mira. However, the
BG/Q environment does not provide some capabilities, such
as MPI dynamic processes and special tools like Intel Soft-
ware Development Emulator (which is only available on Intel
processors). For experiments that needed these capabilities, we
used the Argonne LCRC “Blues” cluster. Each Blues node has
two Intel Xeon E5-2670 (8 cores each) and 64 GB memory.
We run experiments on Blues up to 256 nodes (4K processes).

The baseline implementation of the evaluation is MPICH
3.2 which uses the VC-VCRT model. The libraries and appli-
cations in all experiments are compiled using GCC 4.7.2 with
-O2 option and statically linked.

A. Memory Usage for Communicators with Regular Model

We first focus on the memory usage of AV-Rankmap.
For this experiment, we use two microbenchmarks: split-
loop and dup-loop. The split-loop benchmark splits the odd
and even ranks of MPI_COMM_WORLD into two subcom-
municators without reordering the ranks. Thus, the ranks in
the split communicator have the stride mapping model in
the AV-Rankmap approach. The dup-loop benchmark sim-
ply duplicates the MPI_COMM_WORLD. Thus, the duplicated
communicators would have the direct mapping model in the
AV-Rankmap approach. As explained in Section II, for every
communicator that is created by the user, the MPI implementa-
tion internally creates additional convenience communicators:
typically a node communicator (for ranks on the same node)
and a node-roots communicator (for root ranks in all nodes).

1) Split Communicators: Figure 9(a) shows the memory
usage of 10 and 100 split communicators with up to 768K
processes. It is clear that the AV-Rankmap model uses signif-
icantly less memory than the VC-VCRT model. At the full
scale on Mira, the AV-Rankmap uses only 9 MB of memory
for 100 split communicators. The VC-VCRT model, on the
other hand, consumes more than 40% of system memory for
10 communicators and exceeds the total system memory for
100 communicators.

Figure 9(b) shows the breakdown of the memory usage for
10 communicators in the AV-Rankmap and the VC-VCRT
models with increasing number of processes in the parent
communicator. We note that the memory usage of both models
is O(P ) with respect to the total number of processes in the
system: this is because both models need to store the network
physical addresses. But, the AV-Rankmap model has a memory
usage advantage in two aspects. First, since the size of the
network addresses used in AV-Rankmap is smaller (based on
the implementation choices described in Section IV-B), the
constant associated with the O(P ) increase in memory is
smaller for this model. In our implementation, we are able
to reduce the size of each address vector element (AVE) to 12
bytes in the AV-Rankmap model, which is 40-times smaller
than the original 480 bytes in the VC-VCRT model. Second,
since the AV-Rankmap model does not use a lookup table
in common communicator patterns, but instead dynamically
computes the rank to network address translation (based on
the implementation choices described in Section IV-C), in the
common case we use constant memory instead of an O(P )

structure, while the VC-VCRT model uses an O(P ) structure



1 cmp dword ptr [rdi+0x1a8], 0xa

2 jnbe 0x435039

3 mov eax, dword ptr [rdi+0x1a8]

4 jmp qword ptr [rax

*

8+0x5cfcc8]

5 movsxd r12, esi

6 mov eax, dword ptr [rdi+0x1b0]

7 imul eax, r12d

8 add eax, dword ptr [rdi+0x1b4]

9 cdqe

10 add rax, 0x1

11 shl rax, 0x4

12 add rax, qword ptr [rip+0x4682c6]

13 mov rax, qword ptr [rax]

Fig. 6: Instruction of Rank-Address Trans-
lation for stride Mode in the AV-Rankmap
Model.

1 mov edx, dword ptr [rdi+0x1a8]

2 cmp edx, 0x1 ;if mode == direct

3 jnz 0x435370

4 cmp edx, 0x3 ;if mode == offset

5 jnz 0x43537

6 cmp edx, 0x5 ;if mode == stride

7 jnz 0x43538C

8 movsxd r12, esi

9 mov eax, dword ptr [rdi+0x1b0]

10 imul eax, r12d

11 add eax, dword ptr [rdi+0x1b4]

12 cdqe

13 add rax, 0x1

14 shl rax, 0x4

15 add rax, qword ptr [rip+0x467e8b]

16 mov rax, qword ptr [rax]

Fig. 7: Instruction of Rank-Address Trans-
lation for stride Mode in the AV-Rankmap
Model using “if-switch” Hybrid Imple-
mentation.

1 mov eax, dword ptr [rdi+0x1a8]

2 jmp qword ptr [rax

*

8+0x5cfbc8]

3 movsxd r12, esi

4 mov eax, dword ptr [rdi+0x1b0]

5 imul eax, r12d

6 add eax, dword ptr [rdi+0x1b4]

7 cdqe

8 add rax, 0x1

9 shl rax, 0x4

10 add rax, qword ptr [rip+0x47b1c0]

11 mov rax, qword ptr [rax]

Fig. 8: Instruction of Rank-Address Trans-
lation for direct Mode in the AV-Rankmap
Model using “goto” Implementation.
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(b) Detail memory usage of 10 communicators

 0

 200

 400

 600

 800

 1000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

M
e

m
o

ry
 U

sa
g

e
p

e
r 

e
a

ch
 M

P
I 

P
ro

ce
ss

 (
M

B
)

Number of Communicators

VCRT
VC

Rankmap
AV

(c) Detail memory usage with 768K processes

Fig. 9: Memory usage of MPI_Comm_split with different numbers of processes and communicators.

for the lookup.
Figure 9(c) shows a different breakdown of the memory

usage, this time keeping the number of processes fixed at
768K but increasing the number of communicators created. As
expected, the memory usage of the VC-VCRT model grows
quickly with the number of communicators because it uses
a new O(P ) VCRT lookup table for rank mapping on each
new communicator. In the AV-Rankmap model, on the other
hand, each new communicator uses only a small constant
memory space (e.g., to store the offset and stride, which are
two integers) if its rank mapping is regular, as is the case in
our benchmark.

2) Duplicate Communicators: Figure 10(a) shows the over-
all memory usage for 10 and 100 duplicate communicators.
Unlike the results for the split communicators, where the
memory usage of 10 and 100 communicators with the VC-
VCRT model are distinctly different, the change in memory
usage with duplicate communicators is much smaller. This
is because the baseline implementation (MPICH 3.2) already
adopts an optimization techniques for duplicate communica-
tors [11]. It allows a duplicated communicator to share the
lookup table with its parent communicator. Instead of copying
the lookup table, each child communicator only needs to
maintain a pointer to the parent’s lookup table. However, there
is still an increase in memory usage. This is not because of
the user-visible communicator itself, but because of the node
and node-roots communicators that the MPI implementation

internally creates for each user-visible communicator. These
internal communicators are not simple duplicates of the parent
communicator since they contain lesser processes and their
rank layout is different from that of the parent communicator.
This results in these internal communicators creating their own
new lookup tables, and thus using additional memory.

In hind-sight, the VC-VCRT model could have used one
potential optimization that we had not originally considered.
When a new communicator is created (either user-visible or
internal), the MPI implementation could search the existing
lookup tables that were previously created to see if any of
them could be reused for the new communicator. If any of
them matched, the MPI implementation could simply reuse
the previous lookup table instead of creating a new one. At
least for simple duplication of communicators, this approach
would have kept the memory usage fixed with increasing
number of communicators—the internal node and node-roots
communicators associated with the new user communicator
would be able to reuse the VCRTs for the internal node
and node-roots communicators associated with the parent
communicator.

We chose to not improve the VC-VCRT model with this
optimization for multiple reasons. First, we wanted to keep
the model as close to the current state of art as possible.
Second, searching all existing lookup tables every time a new
communicator is created can be expensive, since each search
can take O(P ) time unless additional optimization techniques



are used. Third, as shown in Figures 10(b) and 10(c), the
VCRT portion of the memory usage is fairly small compared
with the VC portion—even at 100 communicators and 768K
processes, the VC portion takes nearly 95% of the total
memory usage. Thus even with this optimization there would
be very small overall gain in memory usage. Fourth, the
AV-Rankmap model provides a more generic optimization
for all regular communicators instead of the special case of
duplicate communicators thus, in some sense, subsuming such
optimizations.

3) Regular Intercommunicators: An intercommunicator
can also have regular mapping models as long as the ranks in
the same group (remote or local) are from the same process
group, and the ranks matches one of the regular mapping
patterns. We also tested the AV-Rankmap model with regular
inter-communicators for completeness. For this experiments,
we split the MPI_COMM_WORLD into odd and even commu-
nicators without reordering, and creates a inter-communicator
between the split communicators. Both the remote and local
group of the communicators have regular mapping model
(stride model). Then, we create split and duplicate the inter-
communicator without reordering and measures the memory
usages.

Figure 11 shows the memory usage of 10 and 100 split
inter-communicators. In this experiment, we perform a odd-
/even split on the inter-communicator. Similar to the result
of split intra-communicators, the AV-Rankmap model due to
the reduction in AVE size and the regular mapping model.
Note that, the VC-VCRT model used more memory for the
mappings of inter-communicators. This is because, the inter-
communicator need to maintain two separate mappings for
the remote and local groups. In addition to the node and node-
roots communicators, the inter-communicator also have a local
communicator for the ranks in the local group. All these three
internal communicators will need their own mappings which
will be additional lookup tables in the VC-VCRT model. But
for the AV-Rankmap model, these additional communicators
only need constant memory for each of their mappings because
the internal communicators for a regular inter-communicator
all have regular mapping patterns.

Figure 12 shows the memory usage of 10 and 100 du-
plication inter-communicators. In this experiment, we simply
duplicate the inter-communicator without reordering. As we
expected, the results of this experiments are similar to the
duplicate intra-communicator experiments. The AV-Rankmap
model is also effective for this use case in reducing the
AVE size and exploiting the regular mapping models for the
remote group, the local group and the internal communicators.
For the VC-VCRT model, the optimization for duplicating
communicators has effectively avoided the copying of the
lookup table for both the remote and the local groups. It also
helped avoiding the copying the lookup table for the local
communicator. However, as it in the experiment on duplicate
intra-communicators, the copying of the lookup tables for the
node and the node-roots communicators are still not avoidable
in the VC-VCRT model.

B. Memory Usage for Communicators with Irregular Model

In the AV-Rankmap model, a communicator with irregular
rank-to-network-address mapping has to either lut model and
mlut model. These models are usually the results for rank
reordering or dynamic process. Here we study the memory
usage of these irrgular models.
lut with Reordering: In this experiment, we create a irregular
intra-communicator by duplicating MPI_COMM_WORLD and
reordering the ranks. We ensure that each duplicate com-
municator has a unique order of ranks. This prevents any
reuse of the lookup table between communicators. In this
worst case scenario, both the AV-Rankmap model and the
VC-VCRT model have to allocate one lookup table for each
communicator, i.e. O(p) memory for mapping. Figure 13
shows the memory usage of 10 and 100 dup-reordered com-
municators. Both the AV-Rankmap model and the VC-VCRT
model consumed a large amount of memory due to the lookup
tables. Note that, the element size of the lookup table of these
two models are the same. Thus, the memory usage for mapping
in both models grows at the same pace. However, the AV-
Rankmap model still has lower memory usage than the VC-
VCRT model due to the fact that the AVE in the AV-Rankmap
model is smaller than the VC in the VC-VCRT model.
Communicators with Dynamic Process: One “optimization”
that we used in the AV-Rankmap model for VC compression
is to move the process group ID from the VC to the com-
municator. The reasoning behind this optimization was that
since most applications do not use dynamic processes, they
should not be penalized with the memory overhead associated
with maintaining the associated metadata. Only applications
that create communicators with dynamic processes must face
this overhead. This helps us reduce the size of the AVE in
the AV-Rankmap model, as demonstrated above. The flip-
side of this optimization, however, is that applications that
do use dynamic processes are penalized more heavily since
each new communicator that is not a simple remapping of the
parent communicator ranks would now need to maintain the
expensive mlut lookup table.

Put another way, in the VC-VCRT model the memory
overhead of maintaining the process group ID is attached to
each VC. Thus, it would increase the base memory usage
but would not add extra memory usage for each new com-
municator created. In the AV-Rankmap model, the memory
overhead of maintaining the process group ID is attached
to each communicator. Thus, the base memory usage would
be small, but if the ranks of the new communicator are
arbitrarily reordered compared to the parent communicator,
the incremental memory usage per communicator would be
O(P ) where P is the size of the communicator.

Here we present our evaluation for the case where a single
dynamic-process communicator is created. We used the LCRC
Blues system, which is an InfiniBand-based linux cluster,
for this experiment because the Mira supercomputer does
not support spawning dynamic process. We create a inter-
communicator with dynamic process and merge it into a
intra-communicator. The intra-communicator is mlut mapping
model. We then duplicate this intra-communicator and reorder
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(b) Detail memory usage of 10 communicators
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(c) Detail memory usage of 768K processes

Fig. 10: Memory usage of MPI_Comm_dup with different numbers of processes and communicators.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

7
6
8
K

M
e
m

o
ry

 U
sa

g
e

p
e
r 

e
a
ch

 M
P

I 
P

ro
ce

ss
 (

M
B

)

Number of Processes

VC-VCRT 10 COMM
AV-Rankmap 10 COMM

VC-VCRT 100 COMM
AV-Rankmap 100 COMM

10% System Memory
20% System Memory
40% System Memory

100% System Memory

Fig. 11: Memory Usage of 10 and 100 Split Inter-
Communicators.
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Fig. 12: Memory Usage of 10 and 100 Duplicate Inter-
Communicators.

than ranks in the new communicator. The rank order in each
new communicator is unique to prevent lookup table sharing.
Figure 14(a) shows the memory usage for 10 and 100 dup-
reordered communicators in the VC-VCRT and AV-Rankmap
models. While AV-Rankmap model used less memory than the
VC-VCRT model for 10 communicators, it used significantly
more memory than VC-VCRT for 100 communicators. As
Figure 14(b) shows, the AV-Rankmap model uses about twice
the amount of memory to maintain the associated lookup
table. This is because each element in the lookup table in AV-
Rankmap stores both the AV table ID and the AV table index
(mlut model), while the lookup table in the VC-VCRT model

stores only the VC index. The trend of memory usage is more
clear when we fix the number of processes to 4096 and change
the number of communicators. As shown in Figure 14(c),
the memory usage of the AV-Rankmap grows rapidly as we
increase the number of communicators.

While this memory overhead is certainly an issue with the
design choice made in the AV-Rankmap model, we believe
this tradeoff is worthwhile for most applications since dy-
namic processes are rarely used in large MPI applications.
In fact, many systems (like Blue Gene and Cray) do not
even support such capabilities. We further note that for other
communicators derived from the mlut-based communicator,
the previously discussed mapping compression techniques still
hold. For example, duplicate communicators created from such
a communicator would not create another mlut table and would
use only constant memory space.
C. Performance

There are two performance aspects that need to be studied:
(1) communicator creation overhead and (2) network address
lookup overhead. As discussed earlier, communicator creation
is not on the performance-critical path for most applications.
Thus, while we do not want to make it too expensive, some
overhead is typically acceptable. Network address lookup, on
the other hand, must not create any additional overhead for
the approach to be practically viable.
Communicator Creation Cost: In the AV-Rankmap model,
when a new communicator is created the MPI implementation
checks to see if the rank mapping of the new communicator
matches any of the regular patterns that it understands. If it
does match a regular pattern, it stores the associated simple
metadata (e.g., offset and stride) instead of creating a full
lookup table for the network address translation. This check
for regular patterns, however, adds some overhead to the
communicator-creation path.

We measure the communicator creation overhead using
Mira and LCRC Blues. The reason for this setup is that Mira
has no support for dynamic process. The inter-communicator
creation on Mira can only be done with ranks in the same
MPI_COMM_WORLD. For completeness, we run the same
experiments on LCRC Blues with dynamic process. Figure 15
and Figure 16 shows the overhead on communicator creation
time on Mira and LCRC Blues, respectively.

Overall, the AV-Rankmap model has 3%–6% overhead
in communicator creation on Mira. For MPI_Comm_dup



 0

 200

 400

 600

 800

 1000

 1200

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

7
6

8
K

M
e

m
o

ry
 U

sa
g

e
p

e
r 

e
a

ch
 M

P
I 

P
ro

ce
ss

 (
M

B
)

Number of Processes

VC-VCRT 10 COMM
AV-Rankmap 10 COMM

VC-VCRT 100 COMM
AV-Rankmap 100 COMM

10% System Memory
20% System Memory
40% System Memory

100% System Memory

(a) Different numbers of processes

 0

 100

 200

 300

 400

 500

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

7
6

8
K

M
e

m
o

ry
 U

sa
g

e
 p

e
r

e
a

ch
 M

P
I 

P
ro

ce
ss

 (
M

B
)

Number of Processes

VCRT
VC

Rankmap
AV

(b) Detail memory usage of 10 ireregular commu-
nicators
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(c) Detail memory usage of 768K processes

Fig. 13: Memory usage of irregular communicators with different numbers of processes.
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(c) Detail memory usage of 768K processes

Fig. 14: Memory usage of mlut communicators with different numbers of processes.

and MPI_Comm_split, the overhead is less than 5% at
full scale of Mira (768K processes). The overhead is due
to the detection of mapping patterns. The overhead for
MPI_Intercomm_create on Mira is also less than 5%,
while the overhead on LCRC Blues is 6%–8%. When running
on Mira, the exchange of network address between the local
and remote groups during the inter-communicator creation
is bypassed because all the processes are from the same
MPI_COMM_WORLD. This saved time for identifying new
process groups, creating new AV table and inserting the
network addresses, which in turn compensated the cost of de-
tecting mapping model. MPI_Intercomm_merge also have
lower overhead on Mira than it on LCRC Blues for similar
reason. The major overhead of merging a inter-communicator
is merging the mapping of the remote and local groups. This
merging is likely to create a new mapping with irregular
model. Therefore, our implementation will try to allocate
mlut for the compatibility for arbitrary mapping with dynamic
process. Later, it will try to detect the mapping patterns
and reduce the mlut to a lut or a regular model. However,
when running on Mira, our implementation can detect that the
remote and local groups only contains the ranks from the same
MPI_COMM_WORLD, which allows it to bypass the creation of
mlut.

Rank-to-Network-Address Lookup Performance: As we
introduced in Section IV-C2, in order to lookup the network
address corresponding to a communicator rank, the MPI imple-
mentation must first lookup what mapping model that commu-
nicator is using and then using that information either compute
or lookup the actual network address. For this experiment, we
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Fig. 15: Creation time for different communicators on Mira.
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Fig. 16: Creation time for different communicators on Blues.

developed a microbenchmark that issues MPI_Put operations
to each rank in a communicator in a round-robin fashion. The
message size is 8 bytes (a double). The microbenchmark set
to send one million MPI_Put messages to each rank;

We perform the experiment with communicators of five
mapping models: direct, offset, stride, lut and mlut. All com-
municators used in the experiments has half of the ranks in
MPI_COMM_WORLD. We use the low/high spliting to create
the direct and the offset communicators. We use the odd/even



spliting to create the split communicator. We reverse the
order of the ranks in the split communicator to create the lut
communicator. The mlut communicator is created by merging
a inter-communicators with 4 local processes and 4 spawned
processes.

We measure the instruction count and the cache misses
for the rank-to-network-address lookup operation. We also
measure the issuing rate of MPI_Put. We study the issuing
rate from two aspects: (1) the theoretical maximum issuing
rate and (2) the issuing rate on real network hardwares. To
measure the theoretical maximum issuing rate, we bypass the
low level network transport. In such a way, each MPI_Put
call will go through the entire software stack of the MPI library
and return right before the data is being sent out. The issuing
rate is bounded the by the cost of the MPI library and the
processing speed of the CPU (including frequency and number
of integer units in the pipeline). Any overhead in terms number
of instructions or cache misses can potentially have a huge
impact on the issuing rate. The issuing rate on real network
hardwares is measured through running the microbenchmark
with unmodified MPI libraries on Mira and Blues. Mira uses
IBM’s proprietary 5D-torus network and Blues uses QLogin
Infiniband QDR network.
Instruction-count Analysis: Table III shows the instruc-
tion count for rank-to-network-address translation using the
switch-based implementation, the if-switch hybrid im-
plementation and the goto statement. The baseline implemen-
tation uses 7 instructions for rank-to-network-address transla-
tion. As we introduced in Section IV-C2, the switch-based
implementation in offset model uses two more instructions
than the baseline. It adds four instructions for the switch
statement and saves two instruction from access the lookup
table. The switch-based implementation in offset model uses
four more instructions than the baseline. On top of the direct
model, it adds two instructions for loading and adding the
offset value.to the rank. On top of the offset model, the stride
model adds another two instrictions for calculating the stride.
The lut model adds spend two instructions to access the lookup
table. The mlut model further need three more instructions on
top of the lut model. One of them is for loading the AV table
ID, and the other two are for loading the address of the given
AV table ID.

For the direct model, using the hybrid implementation saves
the branch to the default case which is not needed in our
implementation. However, it adds overhead to other models.
For example, the offset model in the hybrid implementations
needs four more instructions that the direct. While two of them
are for offset calculation, the other two for the if statement
that checks for offset model. The overhead of the instructions
for these if statement is carried to other models which makes
the instruction count for the stride, lut and mlut to be a lot
higher than them in the switch implementation.

We have also show the instruction count for the goto-based
implementation. As we explained in Section IV-C2, compiler
cannot inline the rank-address translation function because the
usage of addresses to the global labels. Although it has the
minimum number instructions for translation, the function call

TABLE III: Instruction Count for Rank-to-Network-Address
Translation for Different Mapping models. The baseline VC-
VCRT model uses 7 instructions.

direct offset stride lut mlut
switch 9 11 13 11 15
hybrid 8 12 16 18 21
goto 22 24 26 24 28

costs 15 instruction. Such a high instruction count makes the
goto-based implementation less efficient.
Cache Analysis: We mentioned that the performance im-
provement of the AV-Rankmap model is mainly due to the
better cache locality for the shrinked VC. We use the same
microbenchmark as in the issuing rate experiment and instru-
ment the code using PAPI (on Blues) and BGPM (on Mira)
to measure the cache misses. The cache has been warmed
up before measuring. The experiment is done on one Blues
node with 16 cores. Each process issues 8 million MPI_Put
operations. Table IV and Table V show the cache misses
for each level of cache on Blues and Mira.The results show
that when running with the VC-VCRT model (baseline), the
test program experienced high misses in L1D cache and L2
cache. The VC-VCRT model uses large VC objects (480B
each) to store information such as network address of process
and function pointers to the transport functions which is used
during the communication. As we discussed in Section IV-B,
the AV-Rankmap model shrinks the size of VC by moving
these information to separate structures, which effectively
reduces the cache misses due to accessing different cache lines
of the VC object. At the same, the access to common structures
is also more cache friendly. For example, All processes usually
share the same set of the network transports, storing the
function pointers in a dedicated structure improved the cache
locality.
Message Issue Rate: Table VI shows the issuing rate with
communicators with regular mapping patterns. Overall, the
AV-Rankmap model outperformed the baseline in all scenarios
and achieved up to 50% higher issuing rate than the baseline.
The performance improvement is mainly because the smaller
VC size leads to better cache locality for VC objects. We will
discuss this in detail later.

The difference in issuing rate between different mapping
models reflects the extra work in rank translation in these
models. As we mentioned in Section IV-C2, the direct model
is expected to have the highest issuing rate because there
is no extra calculation or lookup in translation. The offset
model is slightly slower than direct due to the addition of the
offset value. The stride is even slower for the extra calculation
for the stride value. Although the lut model does not have
extra calculation, accessing the lookup table can potentially
be slower than the others depending the cache locality of the
lookup table. The results in Table VI generally confirms these
predictions. That is the direct model has the highest issuing
rate while the offset model and the stride model has slightly
lower issuing rate. As we mentioned above the theoretical
maximum issuing rate is bounded by the CPU performance.
The differences between Mira and Blues is mainly because



TABLE IV: Cache Misses for one Process Issuing 8 Million MPI_Put on Blues.
Cache Baseline direct offset stride lut mlut
L1D 120491 103 168 141 98 192
L2 237 47 43 69 53 60
L3 47 48 47 46 47 45

TABLE V: Cache Misses for one Process Issuing 8 Million MPI_Put on Mira.
Cache Baseline direct offset stride lut
L1D 180491 184 191 189 178
L2 422 57 53 61 68

Mira’s CPU has lower frequency (1.6 GHz vs 2.7 GHz on
Blues) and less integer units (1 per core vs 4 per core on
Blues). Note that the placement of generated instructions can
also affect the performance. One example is for the switch-
based implementation on Blues. The offset model and the
stride model share the instruction for adding offset to the
translated rank. This introduces one extra branch instruction
from jumping from the code path of offset to the code path
of stride. This is why the offset model has lower performance
than the stride model in the experiment. Unfortunately, the
compiler does not provide a way to control the code placement
of a switch statement. Thus there is no guarantee on the branch
overhead of each model in switch-based implementation.

The only way to control the branch overhead between
different models is using the hybrid implementation. As we
explained earlier, it uses multiple cascade if statement to
control the checking order of the models. It is expected to be
faster than the switch-based implementation in direct, because
of it avoids the relative expensive table jump and saves of
the branch to the default case in the switch. However, in
the experiment, the branch table of the switch statement was
mostly in cache, thus reducing the overhead of table jump and
diminished the benefit of the hybrid model. On the other hand,
the other mapping models in the hybrid implementation has to
pay the cost of extra branches due to the cascaded if statement
which led to a much worse performance than the switch-based
implementation. Base one these observations, we decide to use
switch-based implementation for the rest evaluations.

Table VII shows the MPI_Put issuing rate through real
network hardware on Blues and Mira. The the AV-Rankmap
model and the VC-VCRT model has almost the same issuing
rate on both machines and with all different communicators.
Due to the cost of transmitting data over the network, the
performance difference that we mentioned above does not
demonstrate its impact on the communication performance.
However, the native hardware support for MPI operations and
low latency nature of future high-performance network already
poses the need of a lightweight MPI library implementation.
Improving the performance can potentially benefit future sys-
tems.

D. Applications
Here we evaluate AV-Rankmap with the miniapps presented

in Section III. Because of limited space, we show the results
only for BT, FT, and SP, from the NAS parallel bench-
marks [4]; AMG2013, Nekbone, from the CORAL bench-
marks [3]; and AMR, from the ExACT codesign center [2].
All these miniapps were run on Mira. The experiments scaled
from 16K processes to 512K processes.
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Fig. 17: Memory usage of rank-process mapping structure of
miniapps on 16K to 512K processes.

Overall, the miniapps create 2–7 user communicators.
Therefore, the size of all the VC objects is still the dominating
factor. The memory usage of these miniapps on 16K processes
is around 15 MB and linearly increases to 244 MB ( 25%
of the system memory) on 512K processes. In contrast, AV-
Rankmap uses only 128 KB to 4 MB of memory on 16K
processes to 512K processes. These miniapps employ different
ways to create communicators, thus leading to different mem-
ory usage patterns for the VCRTs as shown in Figure 17. We
divide the memory usage of the VCRTs based on the process
mapping models of communicators.

The VCRT for direct mapping model communicators uses
a significant amount of memory, mainly because of the
VCRT allocated for MPI_COMM_WORLD. Since the dupli-
cation of MPI_COMM_WORLD makes only a shallow copy
of the parent’s VCRT, Nekbone (which creates 7 dups of
MPI_COMM_WORLD) uses almost the same amount of mem-
ory as does AMG2013 (which creates only one dup of
MPI_COMM_WORLD). As mentioned in Section II, MPI creates
local communicators (node comm and node root comm) with
MPI_COMM_WORLD. These communicators also get dupli-
cated with MPI_COMM_WORLD. VCRTs for offset and stride
communicators in Nekbone, AMG2013, and SMC all are used
for these local communicators.

Besides the use of MPI Comm dup, BT, SP, and
FT create communicators can also be created by using
MPI_Comm_split. BT and SP actually create one large
communicator with the offset model. These two benchmarks
prefer the number of processes to be a square number. When
a nonsquare number of processes such as 512K or 128K
is used, they will try to reduce the number of processes
to the closet square number. They use MPI_Comm_split
to create a offset communicator that is almost the size as



TABLE VI: Theoretical maximum issuing rate per each MPI process on Mira and Blues with switch and hybrid rank-address
translation.

Baseline DIRECT OFFSET STRIDE LUT MLUT
Mira (switch) 11088082 16633243 15486542 15081816 16005225 N/A
Mira (hybrid) 11274682 16641417 16667171 14465111 14935122 N/A
Blues (switch) 64762341 98799192 92134284 96640891 96031355 84512392
Blues (hybrid) 64762341 99848504 93003065 85790667 89610737 82112870

TABLE VII: Issuing rate per each MPI process using real network on Mira and Blues with switch and hybrid rank-address
translation.

Baseline DIRECT OFFSET STRIDE LUT MLUT
Mira (switch) 899888 898876 899381 896354 896860 N/A
Mira (hybrid) 899888 898741 8988278 896162 898547 N/A
Blues (switch) 4324721 4338395 4323876 4311984 4324431 4316782
Blues (hybrid) 4324721 4327688 4330049 4321378 4314790 4310411
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Fig. 18: Memory consumption of process address translation
of Nek5000 on 512K processes.

MPI_COMM_WORLD. FT organizes the processes in a two-
dimensional grid and creates “row” communicator and “col-
umn” communicators. The size of the “row” and “column”
depends on the number of processes and dimension of the
problem. Since all the communicators have a regular mapping
model, the memory usage of rank maps in AV-Rankmap is
small: 1.3 KB for Nekbone, which has the most communica-
tors in these miniapps.

We also tested AV-Rankmap with the full applications
mentioned in III. Because of space limits, however, we present
the results only for Nek5000. We evaluate AV-Rankmap with
two Nek5000 cases. The first case is a medium-size problem
that uses the XXT solver, which creates 24 duplicates of
MPI_COMM_WORLD. The second case is a large problem
that uses the highly scalable AMG solver, which creates 86
duplicates of MPI_COMM_WORLD. We ran both cases with
512K processes (32,768 nodes, 16 processes per node) on Mira
and measured their memory usage of the communicator.

Figure 18 presents the per-process memory consumption
for communicators. On 512K processes, the VCs and VCRTs
consume a large amount of memory, whereas the AV and
rank maps use very little memory. The memory size for VCs
in both cases is the same because of the identical number
of processes. The increase in memory consumption for the
VCRT-VC scheme in the large Nek5000 case is due to the
growth in the VCRT memory. The large Nek5000 case creates
more communicators than does the medium-size case, thus
leading to higher memory usage on VCRTs.

VI. RELATED WORK

Balaji et al. [8] discuss the memory overheads of commu-
nicators in MPI and note that memory usage increase with
the number of processes significantly affects the number of
communicators that can be created. They report that on Blue
Gene/P the number of new communicators that can be created
on 128K processes drops to as low as 264 from 8,189. Their
findings strengthen the argument for compressing the memory
usage of process address translation in communicators.

Several other works focus on reducing the memory usage of
MPI communicators and groups [9], [17]. In order to support
the various possible group patterns, these approaches have
complex models for saving the ranks in groups. However, the
approaches incur high overhead in rank-address translation.
For example, the sparse group proposed in [9] has been
adopted as an optional feature in OpenMPI. The rank to
network address translation is from a child communicator
to a parent communicator, rather than directly from a child
communicator to the actual network address. This means that
as more communicators are created, the translation needs to
iteratively traverse the tree of the ancestor communicators to
get to the actual network address, thus significantly increasing
the number of instructions required to do the translation. We
performed a case study on the performance of the sparse
groups approach. We first perform an odd/even split on the
MPI_COMM_WORLD to create the first generation of split com-
municator. Then we derived the next generation of split com-
municator by split the current generation in the same odd/even
manner. Therefore, all split communicators has stride mapping
model. Figure 19 shows the theoretical message issuing rate on
different generation of split communicators using the default
OpenMPI, OpenMPI with sparse groups and AV-Rankmap.
The objective of this case study is to show the trend of
performance for each approach on different generations of split
communicators. Due to the iterative traversing of the tree of the
ancestor communicators, the OpenMPI with sparse group has
around 10% performance loss for each additional generation
of communicators. On the other hand, the performance of
both the default OpenMPI and AV-Rankmap is invariant to the
depth of the tree of ancestor communicators. Also, due to the
fundamental differences in the implementation, the OpenMPI
and MPICH has a significant difference in performance in
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Fig. 19: Theoretical MPI_Put Issuing Rate for Different
Generations of Split Communicators.

the case study. Besides the performance difference, the sparse
groups in OpenMPI still requires MPI COMM WORLD to
have an O(P)-size lookup table, where P is the number of
processes created.

Some studies propose approaches to distribute the table
for ranks among multiple processes [12], [13], [15]. Sack
and Gropp [15] propose a distributed algorithm for ordered
child communicator construction that uses O(n/p) memory
by distributed tables for storing the ranks. Recent work by
Moody et al. [14] mentions a generalized MPI Comm split.
They propose creating and storing process groups as chains in
O(1) memory and O(log n) construction time. They perform
collectives by exchanging appropriate process ids during the
operation. As we demonstrated in our case study, however,
the rank table is not necessary for most communicators. Also,
because of the nature of the distributed rank table, some rank-
process translations need additional communication, which
adds a large overhead to the performance.

A more successful communicator memory compression
technique used by MPICH is proposed by Goodell et al. [11].
This approach allows duplicated communicators to share the
same VCRT as their parent, which removes multiple copies
of the same VCRT. As we mentioned earlier in the paper,
however, this approach eliminates the need for VCRTs only
in limited cases. Even for duplicate communicators, internal
communicators used in MPI are not direct duplicates and thus
cannot use the same approach. Nevertheless, this approach is
widely used in many MPI implementations and is, in fact, the
baseline case that we compare against in this paper.

Compared with all these previous studies, AV-Rankmap has
three major differences: it eliminates the need for a rank table
for the majority of use cases of child communicators; it uses
a simple process mapping model that avoids the overhead of
complex mapping techniques and distributed mapping tables;
and it tackles compression in both the VC structure and the
VCRT mapping model.

VII. CONCLUSION

We proposed a new mechanism, called AV-Rankmap, for
network address management in MPI. AV-Rankmap detects
patterns in rank mapping that applications naturally tend to
have, as well as the fact that some aspects of the network
address translation are naturally more performance critical

than others. It uses this information to compress the network
address management structures. We demonstrated that AV-
Rankmap significantly reduces the memory usage of commu-
nicators.
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